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Classroom Learning and, instruction Project (CLIP)

Technical Report Series

The Classroom Learning and Instruction Project (CLIP) reports consist of a series of technical reports

describing a program of research at the Learning Research and Development Center, Universiiy of

Pittsburgh. This research is supported by a number of private and public non-military agencies and is

under the general direction of Gaea Leinhardt. The theme of the research included in this series is the

relationship between teaching and teaming in particulim subject-matter areas such as mathematics and

history. Some papers focus on teachers and tow their understanding of specific content (e.g., graphing

functions) impacts on their teaching; some papers focus on new assessment instruments that are

attempting to measure the complexity of the interrelationship between content knowledge and

pedagogy; others focus on the students and how their learning is influenced by their own prior

knowledge in a content area and by the teacher's instruction. It is hoped that the cumulative findings of

these studies Mil contribute to our understanding of learning and teaching. Particularly they will contribute

to those aspects that are unique to particular topics and may in turn enrich our understanding of the field

of teaching and learning as a whole. A list of CLIP reports appew at the end of this report
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Clement, J. (1985). Misconceptions in graphing. In L. Streefland (Ed.),
Proceed IndS of_ the nipth intergAtjoital conference of the International
Group for the Psychology of Mathapialics Education, (Vol. 1, pp. 369-
375). Utrecht, The Netherlands: IGPME.

A competence model is proposed which then serves as a theoretical framework for
providing cognitive explanations for the errors that students make when interpreting
graphs. (The errors are both errors that have been reported in the literature and errors that
have been observed in the authors own research; most of the graphs are qualitative).

Two types of common misconceptions are then discussed in terms of the model:
1) treating the graph as a picture, and
2) confusing slope and height.

July CL1P-90-01 1990
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Clement, J. (1989). The concept of variation and misconceptions in Cartesian
graphing. Focms_ on Learning Problems in Mathematics. 11(1-2), 77-87.

This paper is very similar to Clement (1985)*. The competence model proposed has four
levels of representation of a situation:

1) practkxd representation
2) isolated value correspondence
3) length model
4) graph model

This static model has a more dynamt version that emphasizes representations of variation.
Both models could be useful in understanding historical developments of the notion of
function as well as new instructkrnal strategies.

Two types of graphing misconceptions (reported by others and also observed by the
author) we expkened through this model:

1) slope-height confusioncan be due to a misplaced link between a successfully
isolated variable and an incorrect feature of the graph (or unsuccessful isolating of the
two variables).
2) treating a graph as a picture--In which a student appears to be making a figurative
correspondence between the shape of the graph and some characteristics of the
problem scene. There could be a global correspondence error or a local
correspondence error.

Oresme's diagram (1361) is discussed and shown to use vertical lines in the same way as
they are used in level 4 of the static model. In modern notation the vertical lines are
omitted, even though there is some evickince suggesting that vertical line graphs are fairly
natural and intuitive symbolizations for children (10-year- olds)--thus such line graphs may
be useful for introducing graphs and functions.

9
. See above
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Clements, K. (1981, 1982). Visual imagery and school mathematics. FQY Ole
Learning qt Mathematics. 2(2), 2-9; and 2(3), 33-39.

July

This article covers the following:
1) WO* in psychology on cliffict.ities associated with decoding images.
2) Stemberg--how pupils' strategies could ilip-flop between verbal and visual

representations.
3) Math education section Is general

Aims to investigate the role of visual or spatial imagery in mathematics learning.

Covers 7 mafor areas:
1) Review of theoretical ckicussions (most from psychology) regarding the best way to
define or conceptualize knagery-

-Pictures in the mind
-Propositioned theories of imagery (i.e., knowledge can be represented by sets of
propositions, from which both verbal mut visual images can be generated)

Concludes, at present. there Is no strong reason to discard picture theory.
2) Erati2MILBENCialtaltli-entitatiZONICtiMagga-

-Finding an appropriate research methodology
-Introspective reportingpros and cons

3) ManummentalmagteuliEr-not far along.
4) bittowhikijostraluilmigimassaildbSoviets have done more in this realm.

-Twyman (1972). "The creation of an image can introduce difficulties associated
with decoding the image For example. Images mirt$1 possess irrelevant details that
distract pupils from the main elements in the original problem stimulus, and make it
mons cfifficult for them to formulate necessary abstractions.

-Gagne & White suggest that teachers might require students to "paraphrase"
diagrams to ensure that students have digested diagrams.
5) Verballzer-Visualizer Hypothesb-

-SternbergFlowchart for representation
Strategies that may be adopted tor Verbalizer, Visualizer & mixed

6) Relationship between visual and spatial ability
7) Research into the role of visual image in mathematics learning

-AT1--mixed
-Marriott (1978)--Children taught with manipulatives tended to use them more in

problem solving (Fracticos)
-FaryEven though 3 methods of instruction were used to teach operations on

integers, all kids wanted algorithms

1 0

CL1P-90-01 1990
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Davidson, P.M. (In press). Early function concepts: Their development and
relation to certain mathematical and logical abilities. Child Develooment.

Purpose: The purpose of the study was to investigate the relationship between functional
thinking and performance on Plagetian-Re operation Mks.

amnia: 72 children ki the age range of 6 - 7 were administered 3 categories of tasks.

Tasks: 1) functions defined as exchtmges of properties (e.g. colors)
2) functims delined as rotations of regular polygons
3) morphisms. or functions that preserve an operation or relation.

Findings: Consistent with other findings (Case et W... 1986: Piaget et al., 1968, 1977)* ,
the subjects accurately solved problems involving minumerical functional relaticms by
age 5 or 6. Further, the results suggest a possible process by vilOch devaloping function
notions may contribute to the emergence an understanding of reversible operations. The
principal developmental fincling was a shift from trial-and-error strategies to anticipatory or
inferential strategies. Finally, the results also suggest that functional reasoning may
develop within separate domains, with functions involving extensive content having
implications for quantitative operations, and those involving intensive content having
implications for logical operations.

CEse. R.. Marini, Z., McKeough, A., Dennis, S., & Goldberg, J. (1986). Horizontal structure in
middle childhood: The acquisition of dimensional operations. In I. Levin (Ed.), alageinl
SILUChiteLBISSIMO1110.1bUigkat (PP. 1-39). Norwood, NJ: Ablex.

Plaget, J.. Grize, J.B., Szeminska, A., & Vinh-Bang. (1988). giggenaggymtgadifikusd
mak= (F. Castellanos & V. Anderson, Trans.). Dordrecht, The Netherlands: D. Reldel.
(Original work published in 1968.)

*July CL1P-90-011 1 1990
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Dreyfus. T.. & Eisenberg, T. (1982). Intuitive functional concepts: A baseline
study on intuitions. Journal for Refeestt in Mathernatick Edwation,
11(5), 380-380.

Purpose: This paper examines junior high students' mathematical intuitions in the
particular area of functional concepts and considers four hypotheses.

Hi: Intuitions on functional concepts grow with pupils' progress through grades.

112: intuitions are independent of sex.
H3: knuitions of high-level students are more often correct thEm those of low- level

students.
H4: intuitions are more often correct in concrete situations than in abstract ones.

The authors introduce a 3 dimensional block for thinking about function knowledge, where
the x axis displayed settings (or representations), the y axis displayed concepts, and the z
axis displays levels of abstraction or generalization.

Sample: The sample is drawn from students in grades 6 tiwough 9 in classrooms defined
as either High or Low Absoiv (Absolv combined ithillty/social rffsadvantage ranking). 24
classrooms from 12 schools in Israel were equally Mributed across grade and Absolv.

Methods: Ali subjects were tested at the beginnktg of the school year with one of tivee
questionnaires on function concepts. In each classroom students randomly received
either th, diagram, the waph or the table form as the setting on which they were tested on
5 concepts, each at 2 levels of abstraction.

Findings: Significant differences in performance were found for Absolv (HO al better).
Grade (overall invrovement from 6 to 9), and Setting (Diagram most difficult). Within Grade.
there was a dip from 7th to 8th for Low Absoiv subjects. Within Setting, graphs were
preferred by High Absolv subjects & tables by Low Absolv subjects. No overall difference
by Sex, except that boys did better in grades 6 & 7, and gkis did better in grades 8 & 9.
May be related to girls' earlier maturation or boys' diminishing seriousness. Previous
studies of mathematics ability of girls this age show them to have poor attitudes and poor
performance. Girls' superior intuitions in these results demonstrate the need to consider a
teaching approach that exploits Moir hffultions.

Considering levels of abstraction, ail factors that were significant on the whole test carried
over to the concrete part. All factors except setting and 3-way grade-by-Absolv-by-sex
carded over to the the ithstract pwt.

Among concept, image was answered best and slope worst. Within setting-by-Absolv,
Low Absoiv students preferred tables and High Absolv students preferred graphs. across
almost all concepts.

There was a noticeable drop between 7th and 8th grade performance on Cartesian
coordkrates despite 7th grade instruction on the topic.

COnclusi on s
1) Pupils' intuitions on functional concepts do grow with pupils' progres- through the
grades.
2) Boys and girls have equal intuitions although they develop atdifferent rates.
3) High Absolv pupils have more correct intuitions than Low Absolv pupils.
4) Reject the 4th hypothesis. Intuitions are no more correct in concrete situations than
abstract.

12
July CLIP-90-01 1990
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Oufour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical
considerations concerning the problem of representation. In C. Janvler
(Ed.). Prot) leMg of represeptation in the teaching awl learning of
mathematics (pp. 109-122). Hillsdale NJ: Eribaum.

July

Makes distirxtion between internal & external representations:
-Internalmentlif formulations of reality (the signified)
-Externalall external symbolic organizations that attempt to represent a certain
mathematical reality (the signifier)

The chapter is mainly concerned with external representations, but also examines how
internal representaVons can be linked to external representations in teaming. the chapter
attempts to answer five questions at mit the use of representations by presenting
exanvles and summaries of the authors' research, most of which has been conducted with
elementary students. The five questions and answers appear below.

1). :t IL IL:t= lo. 1-=

-Representations are an inherent part of math (I.e., representations are used as
tools for treating concepts) Certain representations are so closely associated to a concept
that it is hard to see how the concept can be conceived without them.

-Representations are multiple concrettrations of a concept. We want
students to grasp the common properties and extract the intended structure.

-Representations are used locally to mitigate certain difficulties.
1) a task is given along with several representations hoplag that the student will find
one useful
2) in the come of teaming a concept, sporadic recourse is made to representations
on which the student may lean
3) teacher draws attention momentarily to a difficulty.

-Representations are intended to make mathematics more attractive and
interesting. Representations are used in textbooks to motivate the child or to present
anEdogies to the reEd wodd.

Side point: Some representations have as their primary concern to be as accessible as
possible to students, whereas others have as their primaiy concern the math object itself.

2) What are the expected outcomes of the use of such a wide varlet/ at representations in
Itsleatalmsztraigh?

-Learner perceives the representations as tools.
-Learner appropriately selects one representation and rejects another and knows why
-Learner passes (translates) from one representation to another
-Learner knows possibnities, limits, and effectiveness of each representation
-Learner will be able to grasp the common properties of diverse representations and be

able to construct the intended concept
-Learner will solve a given task using the suggested representation
-Learner will approach tasks with the attitude that if one representation does not WO* he

can try another

3) ' ic.ii (:J:t-.111:0 0J II:: 111:1111:tlii*t=

-Are conventional math representations perceived as tools for solving
problems? Example gfven from their research of students not using graphs to help
them solve an equation.

13
CL1P-90-01 1990
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-How do concrete multiple representations used in current teaching
contribute to the child's construction of the concept?
According to their research, children often do not realize that different representations
embody the same situation. Example of subtracting on an abacus and with paper and
pencil.

-To what point can a child, who is experiencing difficulty in solving a
problem. select a representation that will bring him to resolve this same
problem?
Does a child really "selecr a representation?--No, they simply retain the one that was
provided or use the one which is most lanillar to tf--m (even though it may not be the most
appropriate). Does the child see the same task in each of the representations given?--
Chikiren say that there are as many different problems as there are representatkes. They
will say that two representations concern the same problem way if the same numbers are in
both.

Is the child convinced that regardless of the particular representation he uses he will
necessarily arrive at the same result?-No. They give an example of a child correctly
workkig through a problem using one representation and then shown the incorrect answer
of another child who worked through the same problem using a different representation.
The child shows no &stress over ihe fact that the same problem has two different answers.

How do children develop the attitude of having recourse to representations in case they
encounter difficulties?-by acquiring the conviction that representations can be a help in
unscrambling a problem situation. According to their research, most students do not have
this conviction.

4) HZ5LasgaisilaiswikkEt atwe einsmiatims?

-Examples of representations introduced prematurely: Children being
introckiced to '1>" and 2-thmensioned tthies before they can comprehend them. Teaching
the representation beiximes the goal rather Man using it as a tool for attaining the "rear
goal of kicreased math understanding.

-Examples of representations used inappropriately: The numberline
representation has several misconceptions associated with it; the stepping-stone
analogy, the lack of appreciation for equal clistances, and the "arrow." Authors suggest
that these potential problems can lead to problems in later learning. Teachers often use
external representations for a problem situation without realizing the discrepancy that can
exist between those used and the one envisioned by the child.

5) How can wa oiganize instniction to maximize the contributicto cti children's use of their
own representations in their teaming?

In twditional teaching, representations are imposed from the outside: children are not
encouraged to construct or exploit their own mathematical representations. The only
times that they may be encouraged to "think up' a representation is in word problems.
Examples are provided of children not spontaneously using representations to explain or
solve a problem.

4
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Even, R., Lappan, G., & Fitzgerald, W. (1988, November). Pre-service teachers'
conceptions of the relationship between functions and equations. In
M.J. Behr, C.B. Lacampagne, & W.W. Wheeler (Eds.), Proceedings of the
tenth annual pieejing gt Ihe IOW) American Chapter of the international
Group for the Psychology of Mathematicq ,Educalion (pp. 283-289).
DeKalb IL: IGPME-NA.

July

Emma: The purpose of Ns paper was to report on a study of prospective high-school
teachers' understandings of the relatimship between fumtions and equations.

Subjects: 152 prospective secondary math teachers, in their last phase of professional
education.

Tasks were designed to get at subfect-matter content knowledge and pedagogical
content knowledge about the notion of a function, in particular the relation between
graphical and algebraic representation of a function.

Data csAjoction: An open-ended westionnaire was administered to all subjects and 10
subjects were interviewed on abstract functions.

Balla: (based makIly on the questionnaire):
1) The role of equations in the definition and image of floction:

a) close to 20% identified the notion of a function with its algebraic representation:
b) almost 50% related functions drectly to an equation in at least 1 out of 2 of their
answers to a pair of questions.

2) The values of functions as solutions to equations:
a) 80% did not make the connection between the two representations.

15
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Goldenberg, E.P. (1988). Mathematics, metaphors, and human factors:
Mathematical, technical, and pedagogical challenges in the educational
use of graphical representation of functions. Journal of Mathematical
Behavior. 7, 135-173.

This paper deals with implications of graphical technology on the teaming of graphing and
functions. The author raises the issue that even though children work with visual forms
(e.g. orawings) for many years, way before studying graphs in general and graphs of
functions in particular, graphs are not more accessible to students than other symbolic
representations. Graphs have their own conventions and ambiguities, which earlier
experience does not necessarily make easier. This can mean that graphical
representations are in a way unique kinft of symbolic representations. On the one hand
one tends to rely on what one sees in a graph (more than in other less visual symbols), yet
the conventions we often quite different than expected. so relying on what one actually
sees may turn out misleading in many instancas. There is some evidence hi Goldenberg's
work that suggests that perception may be more dominant in some cases over logical
thinking, when a conflicting situation arises.

There are several sources of waphical illusions that might be created by a computer:
1) finitude of the °window"
2) shape of °window"
3) position (comparative)
4) scaling ("picture" changes)
5) difference between a dot and a point

Learning through a computer allows the development of different notions of a function
machine. These notions are:

1) number in/numbe rxit machine (variable)
2) number in/function out machine (parameter)
3) number in/pak out machine (point)
4) function intfunction out machine (transformation)
5) function in/graph out machine (object)

The computer also may create a ''magic" effect that should be taken into account.

IG
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Greeno, J. G. (1988, November). The situated activities of learning and knowing
mathematics. In M.J. Behr, C.B. Lacampagne, & M.M. Wheeler (Eds.),
Paper pusented at the tenth annual pmetina of it", tuartp Anitrican
Chapter of the international Rump _tor tha Pelcbolggy of Nittlyentatics
gslysgign, (pp. 481-521). DeKalb IL: IGPME-NA

gspsegleathamemEli. The author begins by laying out a context for his research on the
concept of function. He first develops ideas related to the active and the situated nature of
mathematical teaming and knowing. Oven these characteristics of mathematical practte,
he notes that the normative mode of classroom instruction, which emphasizes passive
watching and mimicking, cannot be expected to produce indviduals who are capable of
actively generating mathematical meaning. Rather students too often view mathematics as
the rote manipulation of meaningless symbols ierd view themselves as possessing a low
level of mathematical ability.

Beseirch Questions, The research focused on 3 general questions:
1) How one might characterize the implicit understanding that students have

regarding functions and variables;
2) Identifying characteristics of situations in which students reason effectively about

functional relations among quantities;
3) Describing the language that students used as they referred to quantities that were

properties or relations in the situation that was used to exempny functions.

lathed. Ten pairs of students (grades 7-11) were asked to reason about the operation of
a simple machine that embothes linear functions. Interviews occurred in 5 phases: (1)
students gained familiarity with the system by manipulating the components and talking
about it: (2) students were asked questions about specific situations set up by the
experimenter: (3) shmients were asked to rniOte situations happen (on the machine) that
were verbally described by the experimenter; (4) students were asked a series of
questions requiring inferences based on the linear functions in some situations; and (5)
students were asked a question designed to elicit discussion in general terms.

Ersantalyikaagi. Based on the sturkents' responses to questions in the fourth section
of the interview, the author drew the following tentative conclusions:

1) Students did have an implicit understanding of the concepts of function and
variable. Evidence included the following:

- A clear sense that the number of turns and the final position are functionally
dependent.
- An appreciation that a violable (spool size) corid Wm on different values.
- A realization that one variable (spool size) could be compensated by a larger
value of another variable (number of turns).
-An appreciation that the intercepts of functions (starting points) could be vioied.
-An understanding that, for any of 4 variables, the value rould be inferred from
values of the other 3 variables.
-An understanding of the ratio of values of 2 functions.

2) in answer to the question, "What was there about the machine situation that
enabled individuals to reason effectivelyr The foNowing was suggested: The quantities
and their relations could be observed as structural features of events occurring in the
machine situation. In other words, understandkig relationships was supported by the
evident camel relations between turning the handle, wkoling the string around the spool,
and pulling blocks along the path. Thus concrete objects and events played an important
role in reasoning about complex properftes suct as cpantitative relaVons.

3) Language serves a crucial role ki connecting between kidviduals and to situations.
In particular, the levci of generality may be a key feature to examine when attempting to
understand math principles.
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The author concludes by proposing thal instruction treat students as active partIcipantt . in

the social process of mathematical teaming and suggests that Lampert's (1986, 1988)*
teaching illustrates that this is possible.

Lampert. M. (1986). Knowing, doing, and teathing multiplication. Cognition and Instruction. 3(4), 305-
342

Lampert. M. (1988). The teacher's role in reinventing the meaning of mathematical knowing in the
classroom. In M.J. Behr, C.B. Lacampagne, & W.W. Wheeler (Eds.). proceedbigg al the jenthfflinual
IL. k Ito f tkz k A1 I ;.tt,;ILk...:tt
Education. DeKalb, IL: 1CIPME-NA.

July

°/ 1.:411V: II L kI tlio/LoAol 1°4 j =

18
CLIP-90-01 1990



Leinhardt. Zaslavsky. & Stein 12 Annotated Bibliography

Janvier, C. (1981). Use of situations in mathematics education. Edu_catignai
Studies in Mathematics, II, 113-122.

Purpose: The study questions a common assumption that situations guarantee
*concretization" of abstract notions. Thus it examktes the effect a situation may have in the
abstraction process.

Eamjite; Twenty secondary level pupils (ages 11-15) were interviewed: 7 in 1st year, 7 in
2nd year, and 6 in 4th yew. In addition, forty pupils of Vie 1st yew received a written form
o! the task.

Task: The task given to the pupgs was a racing car problem. The problem oompf:7es three
parts: 1) the presentation includes a verbal description of the situation represented by the
graph (speed [km/hr] of a racing car along a 3 km track in relation to the distance along the
track (kmj), and the graph itself. The presentation is follmved by 2 central questions (and a
few probes In case the pupil does not answer correctly). The questions are basically: a)
How many bends are there along the track? b) which bend is tiva worst? the easiest? the
"second worst"? 2) Tte grlph is replaced by a sheet of paper on which three racing tracks
are drawn. For each track there is a grid on which the student is asked to sketch a speed
graph representing a racing car driving that track: 3) The first graph is brought back and a
sheet of paper with a selection of tracks is presented. The pupil is asked to choose the
one track that is described in the graph.

Besulls.; The main mistake pupils committed was confusing the graph with the track. This
mistake was more common among the 1st year students. Students appeared to use the
graph simultaneously at a symbolic and a pictorial level. Interviews indicated that familiarity
with the situation, namely car racing, was supportive to some of the pupils In using the
graph at the proper syntofic level In the first part of the task. For these students, the third
part became more difficult.
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Janvier. C. (1903). Teaching the concept of function. illtatbematicat Eaucation
for Teaching, 1(2), 4840.

The paper lays out some theoretical considerations regarding the notion of function that
leadlo a proposed spkal didactical appoach. Thft approach comprises three main phases:

1) the concept of variation (staircase analysis)
2) introducing some equation
3) the functional notation

The paper deals with different meanings of a function, for example, rule, dependent
variable, correspondence, set theory definition. Cartesim product, and particular types of
relations.
The set approach to functions leaves out the rule, which is the basic notiondidactically
and historicak The relation approach is not biased towards the co-domain.
There are three equivalent notions of a function that are discussed: *the way it varies".
rules defining types of variations, and functions as mathematical models in situations.

A classification of functions is suggested:
1) non-ordered finite domain
2) ordered finite &main
3) continuous with ordered, dense domain

The claim is that functions of types 1 and 3 are fundamentally different.

Functions differ Wong another dimension toowhether there are time dependent variables
(explicit or irrplicit) or not time dependent

Functions are usually represented by equations, tables. graphs. or verbal descriptions.
Different types of translations can be carried out from each mode to another.

20
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JanvIer, C. (1987). Translation processes in mathematics education. In C.
Jenvier (Ed.), Problems ot_reareseivtation In _mathematics learning ORO
problem solving (pp.27-31). Hillsdale NJ: Erlbaurn.

The author claims that particular uses of representations are overlooked. specifically the
translation processes. By translation processes he means the psychological processes
involved in going from one mode of representation to another e.g., from an equation to a
graph. It is hard to identify the literature on translations because often it is dealt with
indirectly/implicitly.

Seven Points

1) Comprehensive 4x4 table of translatior processes in the graphing domain is provided.
The 4 representations are table, graph, equation, amd verbal description.
--Illustrates the problem of "namlivw a translation.

2.) Direct and Indirect processes are alternate ways to achieve a translation.
--Example: moving from a table to an equation is often carried out as moving from table to
graph to equation.
--Indirect processes are substantially different from direct processes.
--Math programs develop exclusively Indirecr verr' s of translations.

3) Trmslations (a) involve two representations, the source & the target; and (b) have the
property of directionality, (i.e., going from a graph to an equation is not the same as going
from an equation to a graph.)
--His research suggests that translation processes are best developed in symmetrical pairs.

4) The role of language: words play a central role In translations.
--Verbal tags are given to relevant elements and the translation is carried out through the
efficient handling of :hose tags.

5) Application to the teaching of music.

6) In his opinion, the study of more complex math topics can be made more meaninglul if
approached from the translation framework.

7) Translation processes and curriculum design.
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Kaput, J. J. (1987a. July). Linking representation ig jhe symbol systems of
tgebra. Unpublished manuscript, Southeastern Massachusetts

University, Department of Mathematics, North Dartmouth.

The author distinguishes between two notfons of representations:
1) The notion of gyirggliNgstsenlighm es the means by which an individual organizes

and manages the flow of experience.
2.) The notion of aureseatatteasofffn as a materially realizable cultural or linguistic

artifact shared by a cultural or language community.

It should be noted that:
1) A mathematical representation system and a mathematical symbolic system are

used synonymously.
2.) A distinction is made between a mathematical representation and a "naturar

nonmathematical representation (i.e. language).
3) There is a direct analogy between the notions of symbol systems as a specifiable

organizing structure and the idea of grannatical structure in natural language.

According to the author, there are 4 sources of meaning in mathematics. which are
grouped into 2 complementary categories:

A) Referential Extension:
1. Via translations between mathematical representation systems.
2. Via translations between mathematical and non-mathematical representations
(such as natural language. visual images, etc.)

B) Consolidation:
3. Via pattern and syntax learning through transformations within and operations
an particuktr representaticn system.
4. Via mental entity building through the reification of actions, procedures and
concepts into phenomenological objects which can then serve as the basis for
new actions, procedures and concepts at a higher level of organization ("reflected
abstraction")

According to the author, the third source is the most dominating in school mathematics.

The author does not assume an existence of an absolute meaning. For example, there are
several different meanings for the mathematical term "function", and each family of
meanings has its more congenial representations.

2,2

July CLIP-90-01 1990



Leinhardt, Zaslavsky. &Stein 16 Annotated Bibliography

Kaput, J. J. (1987b). Representation and mathematics. in C. Janvier (Ed.),
t L'

(pp. 19-26). Hillsdale NJ: Eribaum..

The author argues that even though the idea of representation is continuous with the
mathematics itself, the role of representations In the math curriculum Is often
underestimated. ft seems as if the main focus in the first 8 years is on numbers, while we
really only work with particular representations of numbers. Some of the properlies are
sensitive to the representation while others are Independent of it (e.g. primeness of a
number is an independent property while the simplicity of a graph is sensitive to the kind of
scaling we choose to use).

The author descrthes a representation system as consisting of 2 worlds and an explicitly
describable correspondence between them under which one is the representing world
and the other is the represented world. There are aspects of the represented world that
are being represented and aspects of the representing world that are doing the
representkig. He mentions 4 broad and interntkig types of representations:

1) Cognitive and perceptual representatkm.
2) Explanatory representation invotving models.
3) Representation within mathemitics.
4) External symbolic representation.

He restricts his discussion to cases in which the worlds embody some kinds of
mathematical structures (such as various number systems, vector space, sets of functions
between number systems. etc.).

A symbol system is a symbol scheme S together with a field of reference F. and a
systematic rule of correspondence c between them. A mathematical symbol system is a
special symbol system In which F is a mathematicai structure. hi most cases, F itself is also
a symbol scheme that can be taken to be the representing world in another symbol
system. The medium - a physical carter In which the symbol stheme, hence symbol
system, can be concretely instantiated - plays a role in possibly creating confusion. In
practice. the syntax of a given symbol scheme is coordinated with its field of reference in
order Mat the correspondence between Mem preserves certain attributes. Nonetheless.
a given set of characters. and even certain rules for combining them, may participate in
several different symbol systems and hence have different "meanings'. i.e.. referents.
This situation is responsible for a whole class of symbol-use errors in mathematics. e.g..
those having to do with the "." character, which participates in several different, but
related mathematical symbd systems.
The author goes into a detailed analysis of a specific example of several symbolic systems
involved in graphing algebraic equations.
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Karp kis. R. (1979). Continuous functions: Students' viewpoints. guraDeall
Journal of Science Education, 1(4), 397-413.

Purpose: The purpose of this study was to identify the pmcedures by which secondary-
school students deal spontaneously with data pairs that describe continuous functional
relationships. Based on the hypothesis that functionality is a reasoning process, answers
to the following three questions were sought:

1) What categories are needed for classifying students responses to tasks requiring
interpolation in a contkluous non-linear relationship.

2) How Is the distribution of student responses among the above categoiies
dependent on the students' grade level and enrollment in math classes?

3) How effective Is a brief demonstration of graphical interpolation in changing the
students' behavior?

Sample: The sample consisted of 377 students from 6th to 12th grade, in a middle to
upper-middle class community.

Methost: The subjects were administered tasks by the author, during a regularly
scheduled class. The students were given a booklet with written questions. The first was a
Bacteria Puzzle. The students answered it, and handed in their solutions. A brief
demonstration of a graphical solution to that problem by curvilinear interpolation was given
and then the students were asked to answer the next two questions (Cylinder Puzzle and
Spaceciaft Puzzle).

In the first and third items, functionality was a dominant process. The second item was
based on proportions.

Interviews with 37 high school students were conducted to explore the thinking and
rationale behind the written answers.

Eindiligi: The main categories identified for items 1 and 3 are:
Category l-kfluitive
Category SI_ Straight line
Category SC-Straighttcurved line
Category C-Curved line.

The categories identified for item 2 are:
Category I-Intuitive
Category A-Additive
Category Tr-Trensitional
Category R-Ratio

In the Functionality items, students seemed to tend to complete the graph by connecting
two adjacent points with a straight line (SC). This tendency was smaller for older students.

The student responses distribution by categorizes are analyzed in the paper, to each of
the three tasks, foliowed by a discission of implications for instruction.
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Kerslake, D. (1981). Graphs. In K.M. Hari (Ed.), Children's unglerstanding of
mathematics coggeots: 11-16 (pp. 120-136). Oxford, England: Alden
Press.

Puragse: The purpose of the study (part of CSMS) was to investigate the important
underlying ideas which are necessary components of the understagfing of graphs in
schools. These ideas were investigated at various levels of difficulty.

Sample: The sample consisted of 459 second year pupils (13 years old), 755 third year
pupils (14 years old) and 584 fourth year pupils (15 years old) from a number of different
secondary schools in Eniyand.

Mettmt: A test was constructed that Included items focusing on: block graphs and
coordinates, continuous graphs, scattergrans (in which a decision has to be made on
whether the plotted Onts should be connected and whether there is a meaning to points
between those that are plotted), choice of axes and scales, distance-time graphs.
gradient, parallel lines, and equations of straight lines. Some items were presented in
rmfamiftar forms, to prevent stuckints from relying always on learned techniques

From all the items in the graphs test three groups of items have been identified (same
method. as Kuchemann, 1984). Each group is called a level, and a child is assigned to the
highest level in which s/he is successful on about two-thirds of the items.

The three levels are described below according to the tasks that were involved in the items
included in them:

Level 1plotting points. interpreting block graphs, recognition that a straight line
represents a constant rate, and simple interpretation of scattergrarns.

Level 2simple interpolation from a graph. recognition of the connection between rate
of growth and gradient. use of scales shown on a graph, interpretation of simple travel
graphs and awareness of the effect of changing the scale of a graph.

Level 3understanding of the relation between a graph and its algebraic expression.

Einglins: The fourth year had more students at Level 3 than did the two you..r age
groups. and fewer at level 1. The easiest items were almost equally well done by all age
groups_ On the most difficult items there was little difference between the two younger
age groups.

The data suggests that many aspects of grwhs are well within the capability of secondary
students. However, there appears to be a large gap between the relatively simple reading
of informatbn from a graph and the appreciation of an algebraic relationship.

Some implications for instruction are discussed.
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Kuchemann, D. (1984). Stages in understanding algebra. 1gurnal of 3tru_olurett
Learning, 113-124.

Purpose: The purpose of the study (part of CSMS) was to help teachers and curriculum
developers improve the match between the cognitive demand of what children are taught
in the area of generalized arithmetic (the use of letters) and indivkival children's levels of
understanding.

A Piagetian framework was adopted in developing tests that served as research and
diagnostic instruments.

Six categories for describing children's interpretations were formulated, before the final
version of the test was designed:

1) letter evaluated
2) letter not used
3) letter as obfect
4) letter as specific unknown
5) letter as generalized number
6) kdter as variable

am*: The sample consisted of 1128 13-year-olds. 961 14-year-olds, and 731 15-year-
olds.

Method: The research instrument was a written test containing items in each category.
The first method that was tried was based on item characteristic curves. The measure of
association chosen was the phi coefficient, which was used in two ways: "spider diagrams"
and factor analyski. The consistency of levels was assessed by using Guttman scalogram
analysis.

The remaining items, atter rejecting those with a relative lack of consistency, were
classified into four levels (stages).

Bolts: The findings suggest that the algebra test measures a .Jirly unified aspect of
children's understanding of generalized arithmetic. The four algebra levels appear to have
some correspondence to Plagers descriptions of concrete and operational thinking. (see
Kuchemann, 1981. for more detail).
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Leinhardt. G.. Stein, M.K., & Baxter. J. (1988). What a difference a class makes,
Unpublished manuscript, University of Pittsburgh, Learning Research and
Development Center, Pittsburgh PA.

July

The research reported in this paper compares and contrasts the instructkm of one teacher
in two different, back-to-back, fifth-grade mathematics classes. Focused on the
presentations of eight lessons on the topic of functions and graphing, this study examines
how Mr. Gene taught the same new material under two slightly different sets of
circumstances. This reseNcil aims to identify similarities and differences in teaching that
occurred between the two groups, to understand why differences occurred, and to
determine what effects the differences mtht have had. In athiltion, the researchers
attempt to detect when the teacher made adjustments in hstruction for one group or the
other and to explore the nature of those adjustments.

The teacher divided his class overall mathematics class of 27 students into two ability
groups. with 14 in one and 13 in the other. The former group. considered to be
comparatively brighter, had class immediately before the latter group. The groups are
referred to as the higher group and the lower group, respectively. The lessons were
videotaped arwl then trismscribed in a format that separately shows the teacher's talk, the
teacher's action/demonstration, and the students' talk emd action. Pre- and post-class
interviews with the teacher were also conducted and transcribed, providing siwiementary
data. These data were subjected to four levels of analysis in an attempt to find a level at
which each difference could be mint effectively measured. AU variables that might indicate
differences between the two presentations were identified and categorized try level.

Based on analyses of the data at the more global levels, the investigators conclude that
there were more similarities between the classes than there were differences. In those
areas where differences were found (e.g.. the low group received more lines of protocol
whereas the high group received higher numbers of subject-matter-based exchanges),
questions were raised regarding the actual content of the instructional episodes. The
more fine-grained analyses of the instructional content suggest that Mr. Gene made
presentations of greater precision and intellectual clarity to the higher group. Although
Mese differences were subtle, the authors argue that if a pattern is established (whereby.
for example, the high group is consistently exposed to more key concepts which are
connected to core material in more precise ways). then differences in student teaming
might be expected. Possible rationales for these behavior patterns are being explored.
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Mansfield. H. (1985). Points, lines, and their representations. For the Learning
of Kathernatics.1(3), 2-6.

July

This artide deals with misconceptions. It is primarily a study of language confusion, rather
than one of mathematical thinking. The author points out properties of graphs that make
them uniqw3 as a symbol system. She discusses points, lines, and their representations.
She explores, through discussion, the ways in which 7th graders and college seniors
(teachers) think about points and Nnes.

Findings:
-Both groups think of points and tines in significantly different ways than do

mathematidans
-In general. did not distinguish between the abstract concepts and the physical

representatiorn of points and lines.
-Misconceptions were manifested in following ways:

'Lines have width
'Points are entities added to lines
'Points have a definite size and shape

-their mistaken ideas are based on:
1) the COITVIlun representation of points and kiss in textbooks and instruction
2) everyday uses of the terms

Qonclusion;
If students do not distinguish between abstract concepts and their physical
representations, then their concepts will include features of those physical
representations that are not part of the concepts as used by mathematicians. Instruction
needs to take this into account.
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Merkovits, Z., Ey ion, B.. & Bruckheimer, M. (1988). Functions today and
yesterday. EgiAtE_Leigning_g_Idgat amollo, _1(2), 18-28.

Emma: The purpose of the study was to investigate jusVor high-school (9tti grade)
students' understanding of the concept of function as well as their difficulties and
misconceptions. The concept of function was learned through the set definition.
Three "sub-concepts" that comprise a function, domain, range, and rule of
correspondence (many to one or one to many). were addressed in the study.
Of the lour common forms of representation of a functbn (verbal, arrow diagram. algebraic.
and graphical) the stmly is restricted to two: algebraic and graphical.

aubillats: The subjects were about 400 9th grade stuck:tab (ages 14-15) in Israel.

Methol: items (problems) were designed to assess eight components of understanding
the concept of function. AU functions were "abstract." involving no context or situations.

Results: The results were based on written solutions to the problems. The main findings
were:

1) Three types of functions caused difficulty: the constant one, piecewise. and
discrete.
2) Translation from graphical representation to algebraic was more difficult than vice
versa.
3) The variety of examples in the students' repertoire was limited. There was an
excessive adherence to linearity.
4) In both representations the concepts of preimage and image were only partly
understood.
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Preece, J. (1983). Graphs are not straightforward. In T.R.G. Green & S.J. Payne
(Eds.), The psycholoav of computer use: A kuropean Perspective (PR-
41-56). London: Academic Press.

Purpose:: The purpose of the study was to investigate how much of the information
presented in a graph pupils can interpret in practice.

Sample: The smple cons6led of 122 pupils. 14 & 15 years old

KONA: Pupils were given specific tasks that required them to interpret multiple curve
graphs, ail representing a situation (changes in populations of pond organisms). The
graphs are presented on a computer display. A cormuter simulation program wm used for
this purpose. Think-aloud protocols were collected for a few of the subOcts.

An analysis of what interpreting such a graph involves was carried out, involving the
following features:

1) Domain specific arricepts (about the situation)
2) Graph concepts
3) The number of graphs, of grouping of the curves, of dependent variables (and

type of variable)
4) The absence of scales
5) The axes-what do they represent?
6) 11* actual syntax of the grwth

Results: Findings point to 12 different sources of errors:
1) Reading and plotting points
2) Relative reading
3) An interval is interpreted as a point (answers to "whenr)
4) Concepts arising from the variables were not understood
5) Wodd knowledge interferes
6) A pronounced graphical feature distracts the pupil
7) Misinterpretation of a symbol
8) Confusion caused by too many variables
9) Only one curve on a multiple curve display is interpreted

10) Failure to transfer klformation between graphs
11) Gradents are confused with maximum and minimum
12) The graph is interpreted iconically

There are three categories of error:
1) Cues-errors caused by language or graph (#3, 5, 6, 12)
2) Reading errors--(a 1, 2, 8, 10, 9, 12)
3) Conceptual enors--(# 3, 4, 7, 11, 12)

More details on this can be found in Preece. 1984b.
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Preece, J. (1984a). A study of pupils graph concepts with a qualitative
interactive graph sketching program. computer Education, ff(1), 159-163.

The paper discusses a pilot study in England which investigated 4 pupils (3 fourth-year
boys aged 14 and 1 fifth-year girt aged 14) working with an interactive computer program
called SKETCH. This progran has been developed to research into how pupils develop
concepts of gradient (slope) through sketthing and interpreting graphs.

Four kinds of data were collected:
1) Pupils' answers to a written test (about a time/temperature graph)
2) An audio cassette recorcfing of the complete session (about 50 minutes) with each
pupil
3) The pupils' sketches which were stored on cNc
4) Notes of interesting observations and pupils' comments

The data suggest that the program provides a motivating and flexible environment in which
pupils gain an intuitive understanding of gradient by becoming involved in a series of
simple sketching (modelling) and interpreting activities.
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Preece, J. (1984b). Some theoietical Inuits relate4 _to Interpreting gnipha.
(CAL Research Group Tech. Rep. No. 51). Institute of Educational
Technology, The Open University, Walton Hall, Milton Keynes, England.

This is a theoretical overview based on research findings that have been reported, most of
which indude stuthes in which the author was involved.

Main findings across studies:
1) Students tend to interpret graphs representing situations iconically (context
interferes)
2) Students have 2-3 different notions of a grathent, and apply Cm one whica fits best
the context and the graph
3) Simulated display influenced the development of pupils' notions (some physically
based)
4) Students brought a lot ol irrelevant contextual knowledge

In ail findngs, context appears to strongly influence students' interpretations.

The author discusses how the above findings relate to the following theories:
1) Plagefian theory
2) Alternative conceptions and frameworks (in science education)
3) Mental models
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Schoenfeld. A.M. (1907). On having and using geometric knowledge. in J.
Hiebert (Ed.), Conceptual ens' jarsoglari1 _kandistagLaktmsig121
mathematics (pp. 225-264). Hillside NJ: Eribaum.

July

The generic issue addressed ki this chapter is: "What if anything, will assure that a
student 0 becomes fluent in perfornVng the symtvlic manipulations in that domain, and
(b) comes to understand the deep meaning of the mathematical notions represented by

the symbols and the procedures that are used to operate on them?* (page 227).

In general there are Iwo phases:
Phase 1 - Concrete representations serve as a vehicle for making sense of abstract

symbolic operations.
Phase 2 - Abstracting over the isomorphic aspects of the My symbolic systems leads

to an understanding of the ureerlying mathematical notions and procedures.

A concreta representation, which serves as a reference world (W) has a dual nature: The
oblecis in W are meaningful entities and their attributes and the operations on them are
embedded hi that broad meaning structure. But W can be thought of as a symbolic
system, because it is a representation of mathematical entities and procedures (those of

the symbolic worfd, w).

The symbolic system (w) also has a dual nature: It is a symbolic representation of a
mathematical idea ( perhaps more abstract), and it also is an thstraction of some aspects of

Two assumptions:
1) (Understandhv meanings, operations and interrelationships within objects in W) +

{Understanding the nature of the mapping from W to w) .> (Understanding of the
symbols and procedures in w). (phase 1)

2) (Understanding the structures of different symbolic systems that represent the
same mathemalical idea) + (identifying and perceiving the underlying structural morphisms
between these systems) > (Abstracting the underlying mathematical idea). (phase 2)

Cornplicating factors:
1) A dilemma between the importance of having the concrete representation as

natural and reasonable as possible and the danger of being too natural to be able to see
through it.

2) An isomorphism from W to w at level of syntax may not extend to an isomorphism al
the level of attributed meaning and coherence (page 236).

3) Usually there is not one particular representation that captures all aspects of the
mathematical idea.
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Schoenfeld. A. (1988). GRAMM: A cage stody in educIttlintal technology%
regearch. anti slevelopment, Unpublished manuscript, University of
California, Berkeley CA.

The paper deals with a computer-based microworld called GRAPHER and the kind of
learning and understanding it enhances. The goal of this study was to provide the
'cognitive support structime" %o help students learn about kmctions and grvhs.

As a starting point, the paper presents an analysis of what it means to understand graphs
of straight Ones. These aspects of understanding are very complex and Include: general
geometric knowledge about lines, know*dge of algebra, equation solving, functions and
their algebraic representations, knowledge about the Cartesism plane. knowledge of the
relationships between functions and their graphs, knowledge about conventions, being
able to think simtAtaneously about different meanings of the graph of y=mx + b, knowing
different algebraic representations for straight lines, and having the interconnectedness
knowledge of the abov ).

GRAPHER was designed, keeping the following six principles in mind:
1) To facilitate "conceptual concretfzing".
2) To exploit, whenever possible, the dynamic and interactive nature of the

computationea medum to enable students to operate "directly" on conceptual
entitles and gain meaning.

3) To make overt the links the students should see.
4) To allow students to focus on conceptual issues without having to worry about

technical work.
5) To support "meaning exploration" rather than °knowledge telling".
6) To encourage students' reflection on their understandings.

A learning session with a student working with GRAPHER illustrates the very localized,
disconnected, and fragile nature of knowledge structures of a particular subject matter and
the ways they grow and change.

4

July CLIP-90-01 1990



Leinhardt. Zaslavsky, & Stein 28 Annotated Bibliography

Stein, IVI.K., Baxter, J., & Leinhardt, G. (In press). Subject matter knowledge for
elementary instruction: A case from functions and graphing. Arnstriciin

ucational Research Jcharhal.

The purpose of this article is to examine the role and function of subject-matter content
knowledge in teaching. limn recently, research on the relationship between teachers'
subject-matter knowledge and their students' teaming has not jeen very extensive or
useful . By focusing specifically on the relationship of one fifth-grade teachers subject-
matter knowledge to several aspects of his classroom instruction, the authors attempt to
define and articulate how subject-matter knowledge influences what is taught and how /I is
taught.

The teacher. called Mr. Gene. had taught elementary mathematics for 18 years. He was
interviewed on both his knowledge of the topic and knowledge of how to teach that topic.
plus other relevant items. From these interviews, the results of a card sort task, and
videotapes of his teaching. the authors developed a characterization of Mr. Gene's
knowledge base, a description of the four lessons, and an analysis of their
interrelationships.

The results of the interview and card sort task suggest that Mr. Gene's understanding of
functions and graphing was less developed than the math experts' understanding.
Furthermore, limitations in the teacher's knowledge were found to relate to conceptual
holes and missed opportunities in his classroom presentations. For exanple, Mr. Gene's
arrangement of the cards in the card sort task suggested a knowledge base that was not
elaborately differentiated or hierardOcally organized in terms of mathematicalty powerful
criteria. Most noteworthy, the fact that graphs and equations are alternate representations
of functional relationships appeared to be missing from his understanding. Similarly, the
authors' analysis of his instruction shows that he failed to develop some important
conceptual relationships. including an appreciation of the special relationship between
functions and graphs that was a key point of the third and toroth lessons.

For each problem area identified in Mr. Gene's instruction, the authors are able to draw
connections between what was or was not presented in the dassroom and Mr. Gene's
idiosyncrasies or missing pieces in his knowledge base. They conclude that such gaps in
teachers' knowledge lead to conceptual gaps in instruction and offer specific suggestions
for ameliorating such deficiencies kr both the knowledge base and teaching. Their findings
also suggest that teachers' beliefs regarcfing the importance and purpose of a specific
mathematical topic have a direct influence on the degree to which aspects of a topic are
emphasized and on whether they are included In instruction. This research points to the
need for more detailed studies of the levels and kinds of subject-matter knowfedge that
can support mathematical instruction as a necessary step toward determining what subject-
matter understanding new and practidng teachers should possess.
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Stein, WK., & Leinhardt, G., (1989), interprethn graphs: An analysts ol early
ggtrigimpnge_angLiteespning. Unpublished manuscript, University of
Pittsburgh, Learning Research and Development Center, Pittsburgh PA.

This paper begins with the observation that, although society deems graphing skills to be
impodant, the resewch community knows surprisingly little about how children come to
understand and effectively use graphs. The purpose of the study on which the paper was
based was two-fold. First, the authors aimed to identify the areas of graphing knowledge
and skills with which elementary students have the most and the least degree of difficulty.
Second, they attempt to identify the ways in which children reason about those topics
identified as more difficult.

The data base for the study consisted of 10 elementary students' responses to interviews
on the topics of functions and graphing. An interviewer administered a series of multi-step
problems and asked the students to talli aloud as they were solving the problems or to
explain how they had arrived at an answer. The interview problems related to four main
areas of graphing knowledge and skills: (1) the plotting and reatfing of individual points; (2)
the construction of Cartesian coordinate systems and graphs; (3) the relative (global)
interpretation of graphs; and (4) translating between graphs geld other representational
systems ot functional relationships (I.e., ordered pairs and function rules) . After the
interviews were transcribed, two kkids of analyses were performed: a global scoring of the
students' performance on the entire set of interview items and a more detailed analysis of
the students' reasoning processes as they worked through those problems which the first
analysis suggested were the most difficult.

With respect to the students' overall performance, tbe results suggested that the
students had fittle difficulty with the reading and plotting of points or with the construction
of Cartesian coordinate systems. In addition, they could perform translations that required
them to move him ordered pairs or function rules to graphs. Along with the relative graph
interpretation problems. however, translations that proceeded tram graphs to iunction
rules proved to be cefficult. Thus, the authors conducted a more detailed examination of
those tasks requiring relative waph interpretation skifis and those requiring translations
that used graphs as their initial Input.

The results of the analysis of data relating to relative graph interpretation skills suggested
that students were more fikety to be successful when the task explicitly drew their attention
to the variables represented on the axes. In addition, two distinct styles of learning to
interpret graphs in a refative fashion seemed to emerge. Some students initially focussed
on plots of specific x.y pairs which they then 'Idecoupled" (i.e.. pulled apart the x
coordinate and the y coordinate) In order to sepwately track first the x values and then the
y values. Others began with spatial scanning of the entire line in order to assess its overall
shape and direction. The authors termed these two strategies, both of which were
successful, bottom-up and top-down, respectively.

The results of students' responses to a task in which they were asked to provide a rule for a
graph revealed that the mafority of successful responses involved deducing the rule from
one specific x,y pair and then checking it against a second ordered pair. A second, less-
frequently used method involved comparing the changes in the x variable with the
changes In the y variable in a relative fashion. The authors Suggest that the first method
resembled a bottom-up strategy became it began with a specific point and worked toward
an answer that took into account the entire line, whereas the second method resembled
the top-down strategy because it began with an examination of the behavior of the two
variables and moved toward a specific numeric answer.

The authors interpret their findings about the top-down and bottom-up strategies in light of
recent debates regarding optimal methods and sequences for elementary graphing
instruction. They argue that both strategies are valid learning strategies and that
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researchers should focus on designing instructional methods that complement or build on
both styles.
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Vinner. S. (1983). Concept definition, concept image and the notion of function.
Internajjpgal Jowpal of Mathematics gducation tn Ssten_c_e_find
TVchnology. 14.0), 293-305.

A simple model for cognitive processes is constructed using the notions of concept image
and concept definition. The model Is used to analyze some phenomena in the process of
the teaming of the function concept.

aampilt: The sample consisted of 65 tenth grade and 81 eleventh grade students in
Israel.

Procedure: Students were given a questionnaire with 5 questiom. The first four gave a
description (3 verbal and 1 graphic* of a set of condtions (properties), and the students
were supposed to decide whether or not there exists a function fulfilling those conditions.
The students had to choose between yes and no and to write an explanation for the
choice they made. The fifth questim was: in your opinion, what is a function?* The first
four questions were constructed to get an idea about students' concept images regarding
a function, while the last one examined their concept definition.

Findi ga: With respect to students' concept images: some concept images were not
consistent with the textbook definition (though sometimes consistent with the studenrs
own definiton). Some of those concept images are:

1) A function should be given by one rule.
2) A function can be given by several rules relating to disjoint domains providing these

are half lines or intervals.
3) Functions (which we not algebraic) exist only if mathematicians officially recognize

them (e.g., by labeling them).
4) A graph of a function should be "reasonable.*
5) A function is a one-to-one correspondence.

Four main categories were dstinguished in respect to students' response to the filth
question:

1) The textbook definition. basically (57%)
2) The function is a rule of corresoondence (14%)
3) The function is an algebraic term (14%)
4) Some elements kr the mental pichwe are

taken as a definition for the concepts ( 7%)

Implications for teaching are discussed.
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Wagner, S. (1981), Conservation of equation and function under translormaticns
of variable. *impel, for Research In Mathematics Education, j2.(2), 107-

1 18

Purpose: The intention of the study was to examine the extension of Piaget's theory of
conservation to relational concepts. The study also looked at the "students' ability to
conserve equation and function under alphabetic transformations of literal variables.'
Conservation is defined as the understanding that lhe critical attribute, the essence of the
concept. is invariant under transformations of certain krelevant attributes.'

aernote: The sample consisted of 30 middle and high sclvol students. Half of the sample
was girls and 15 of the students were in middle school. The median age for the middle
school sample was 13 and the median age for the high school sanyle was 16 112.

Piocedure: Each student was interviewed for about 20 minutes during school hours. The
instrument consisted of a series of equations and function charts in which the variables
had been interchanged. The students were asked to compare the statements and
determine whether or not the change in variable symbol affected the referent of the
variable.

figaings: A significant association was not found between age and the ability to conserve
either equation or function. However, a significant association was found between the
ability to conserve and having completed at least one semester of algebra. Also, less than
half of the students krterviewed gave conserving responses to any one of the four tasks.'

Conclusions/Implications: First, the study is very limited because of the size of the sample
and the nature of the pool. Second, each type of conservation task was only presented
once.

The results of the study pointed out two common misconceptions that are often held
about functions: "(a) that changing a variable symbol implies changing the referent and (b)
that the linear ordering of the alphabet corresponds to the linear ordering of the number
system."

The relationship between mathematical background and the ability to conserve suggests
that training is an important factor in conservation. The study results also support the
theory that one can attain formai operational thought in some areas of cognitive ability but
not necessarily all.
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Wavering, M.J. (1985, April). Bic jggicaLtuigningDgremary_tp_whe. line
graphs. Paper presented at the annual meeting of the National
Association for Research in Science Teaching, French Lick Springs,
Indiana.

Purpose: The purpose of the study was to determine the logical reasoning processes
necessary to construct line graphs. Three types of line graphs were used: a straight line
with a positive slope, a straight line with a negative slope, and an exponentially increasing
curve.

SaniRje: The sample consisted of students in math and science dasses in middle and high
school.

Melo& Three reseirch instruments were used, one for each type of line graph. Each
research instrument consisted of a set of instruction, data to make a graph. and two
unlined pieces of paper. No time constrabits were set for accomplishing the task. Students
were required to plot a graph and also to account for their thinking process in writing.

The responses were classified into one of nine categories. The categories ranged from no
attempt to make a graph, to a complete graph stating the relationship between the
variables. The categories in between represented increasingly more successful attempts
at ordering data in one or both variables to correct scaling of the data on the axes.

Resuft: Middle school subjects exhibited behavior mainly in the first four categories.
Ninth and tenth graders overlapped with middle school and highschool subjects, and 11th
and 12th graders exhibited behaviors mainly in the last five categories. The author
suggests that the reasoning that took place could be characterized in Plagellan terms,
The response categories appear to be valid with respect to the three types of graphs.
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